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1 INTRODUCTION

Throughout the history of computing, digital signal processing (DSP) applica-
tions have pushed the limits of computer power, especially in terms of real-time
computation. Although processed signals have broadly ranged from media-driven
speech, audio, and video waveforms to specialized radar and sonar data, most
calculations performed by signal processing systems have exhibited the same
basic computational characteristics. The inherent data parallelism found in many
DSP functions has made DSP algorithms ideal candidates for hardware imple-
mentation, leveraging expanding VLSI (very-large-scale integration) capabilities.
Recently, DSP has received increased attention due to rapid advancements in
multimedia computing and high-speed wired and wireless communications. In
response to these advances, the search for novel implementations of arithmetic-
intensive circuitry has intensified.

Although application areas span a broad spectrum, the basic computational
parameters of most DSP operations remain the same: a need for real-time perfor-
mance within the given operational parameters of a target system and, in most
cases, a need to adapt to changing datasets and computing conditions. In general,
the goal of high performance in systems ranging from low-cost embedded radio
components to special-purpose ground-based radar centers has driven the devel-
opment of application and domain-specific chip sets. The development and fi-
nancial cost of this approach is often large, motivating the need for new ap-



proaches to computer architecture that offer the same computational attributes
as fixed-functionality architectures in a package that can be customized in the
field. The second goal of system adaptability is generally addressed through the
use of software-programmable, commodity digital signal processors. Although
these platforms enable flexible deployment due to software development tools
and great economies of scale, application designers and compilers must cus-
tomize their processing approach to available computing resources. This flexibil-
ity often comes at the cost of performance and power efficiency.

As shown in Figure 1, reconfigurable computers offer a compromise be-
tween the performance advantages of fixed-functionality hardware and the flexi-
bility of software-programmable substrates. Like application-specific integrated
circuits (ASICs), these systems are distinguished by their ability to directly imple-
ment specialized circuitry directly in hardware. Additionally, like programmable
processors, reconfigurable computers contain functional resources that may be
modified easily after field deployment in response to changing operational param-
eters and datasets. To date, the core processing element of most reconfigurable
computers has been the field programmable gate array (FPGA). These bit-
programmable computing devices offer ample quantities of logic and register
resources that can easily be adapted to support the fine-grained parallelism of
many pipelined DSP applications. With current logic capacities exceeding 1 mil-
lion gates per device, substantial logic functionality can be implemented on each
programmable device. Although appropriate for some classes of implementation,

Figure 1 DSP implementation spectrum.



FPGAs represent only one possible implementation in a range of possible recon-
figurable computing building blocks. A number of reconfigurable alternatives are
presently under evaluation in academic and commercial environments.

In this survey, the evolution of reconfigurable computing with regard to
digital signal processing is considered. This study includes an historical evalua-
tion of reprogrammable architectures and programming environments used to
support DSP applications. The chronology is supported with specific case studies
which illustrate approaches used to address implementation constraints such as
system cost, performance, and power consumption. It is seen that as technology
has progressed, the richness of applications supported by reconfigurable comput-
ing and the performance of reconfigurable computing platforms have improved
dramatically. Reconfigurable computing for DSP remains an active area of re-
search as the need for integration with more traditional DSP technologies such
as PDSPs becomes apparent and the goal of automated high-level compilation
for DSP increases in importance.

The organization of this chapter is as follows. In Section 2, a brief history
of the issues and techniques involved in the design and implementation of DSP
systems is described. Section 3 presents a short history of reconfigurable comput-
ing. Section 4 describes why reconfigurable computing is a promising approach
for DSP systems. Section 5 serves as the centerpiece of the chapter and provides
a history of the application of various reconfigurable computing technologies to
DSP systems and a discussion of the current state of the art. We conclude in
Section 6 with some predictions about the future of reconfigurable computing
for digital signal processing. These predictions are formulated by extrapolating
the trends of reconfigurable technologies and describing future DSP applications
which may be targeted to reconfigurable hardware.

1.1 Definitions

The following definitions are used to describe various attributes related to recon-
figurable computing:

• Reconfigurable or adaptive: In the context of reconfigurable computing,
this term indicates that the logic functionality and interconnect of a
computing system or device can be customized to suit a specific applica-
tion through postfabrication, user-defined programming.

• Run-time (or dynamically) reconfigurable: System logic functionality
and/or interconnect connectivity can be modified during application ex-
ecution. This modification may be either data driven or statically sched-
uled.

• Fine-grained parallelism: Logic functionality and interconnect connec-
tivity is programmable at the bit level. Resources encompassing multi-
ple logic bits may be combined to form parallel functional units.



• Specialization: Logic functionality can be customized to perform ex-
actly the operation desired. An example is the synthesis of filtering
hardware with a fixed constant value.

2 BACKGROUND IN DSP IMPLEMENTATION

2.1 DSP System Implementation Choices

Since the early 1960s, three goals have driven the development of DSP imple-
mentations: (1) data parallelism, (2) application-specific specialization, and (3)
functional flexibility. In general, design decisions regarding DSP system imple-
mentation require trade-offs between these three system goals. As a result, a wide
variety of specialized hardware implementations and associated design tools have
been developed for DSP, including associative processing, bit-serial processing,
on-line arithmetic, and systolic processing. As implementation technologies have
become available, these basic approaches have matured to meet the needs of
application designers.

As shown in Table 1, various cost metrics have been developed to compare
the quality of different DSP implementations. Performance has frequently been
the most critical system requirement because DSP systems often have demand-
ing real-time constraints. In the past two decades, however, cost has become
more significant as DSP has migrated from predominantly military and scientific
applications into numerous low-cost consumer applications. Over the past 10
years, energy consumption has become an important measure as DSP techniques
have been widely applied in portable, battery-operated systems such as cell
phones, CD players, and laptops [1]. Finally, flexibility has emerged as one of
the key differentiators in DSP implementations because it allows changes to
system functionality at various points in the design life cycle. The results of

Table 1 DSP Implementation Comparison

Design effort
Performance Cost Power Flexibility (NRE)

ASIC High High Low Low High
Programmable DSP Medium Medium Medium Medium Medium
General-purpose Low Low Medium High Low

processor
Reconfigurable Medium Medium High High Medium

hardware



these cost trade-offs have resulted in four primary implementation options,
including ASICs, programmable digital signal processors (PDSPs), general-
purpose microprocessors, and reconfigurable hardware. Each implementation
option presents different trade-offs in terms of performance, cost, power, and
flexibility.

For many specialized DSP applications, system implementation must in-
clude one or more ASICs to meet performance and power constraints. Even
though ASIC design cycles remain long, a trend toward automated synthesis and
verification tools [2] is simplifying high-level ASIC design. Because most ASIC
specification is done at the behavioral or register-transfer level, the functionality
and performance of ASICs have become easier to represent and verify. Another,
perhaps more important, trend has been the use of predesigned cores with well-
defined functionality. Some of these cores are, in fact, PDSPs or reduced instruc-
tion set computer (RISC) microcontrollers, for which software has to be written
and then stored on-chip. ASICs have a significant advantage in area and power,
and for many high-volume designs, the cost-per-gate for a given performance
level is less than that of high-speed commodity FPGAs. These characteristics are
especially important for power-aware functions in mobile communication and
remote sensing. Unfortunately, the fixed nature of ASICs limits their reconfigur-
ability. For designs that must adapt to changing datasets and operating conditions,
software-programmable components must be included in the target system, re-
ducing available parallelism. Additionally, for low-volume or prototype imple-
mentations, the nonrecurring engineering (NRE) costs related to an ASIC may
not justify its improved performance benefits.

The application domain of PDSPs can be identified by tracing their devel-
opment lineage. Thorough summaries of programmable DSPs can be found in
Refs. 3–5. In the 1980s, the first PDSPs were introduced by Texas Instruments.
These initial processor architectures were primarily CISC (complex-instruction-
set computer) pipelines augmented with a handful of special architectural features
and instructions to support filtering and transform computations. One of the most
significant changes to second-generation PDSPs was the adaptation of the Har-
vard architecture, effectively separating the program bus from the data bus. This
optimization reduced the von Neumann bottleneck, thus providing an unimpeded
path for data from local memory to the processor pipeline. Many early DSPs
allowed programs to be stored in on-chip ROM and supported the ability to make
off-chip accesses if instruction capacity was exceeded. Some DSPs also had coef-
ficient ROMs, again recognizing the opportunity to exploit the relatively static
nature of filter and transform coefficients.

Contemporary digital signal processors are highly programmable resources
that offer the capability for in-field update as processing standards change. Paral-
lelism in most PDSPs is not extensive but generally consists of overlapped data



fetch, data operation, and address calculation. Some instruction set modifications
are also used in PDSPs to specialize for signal processing. Addressing modes
are provided to simplify the implementation of filters and transforms and, in
general, control overhead for loops is minimized. Arithmetic instructions for
fixed-point computation allow saturating arithmetic, which is important for
avoiding overflow exceptions or oscillations. New hybrid DSPs contain a variety
of processing and input/output (I/O) features, including parallel processing inter-
faces, very-long-instruction-word (VLIW) function unit scheduling, and flexible
datapaths. Through the addition of numerous, special-purpose memories, on-chip
DSPs can now achieve high-bandwidth and, to a moderate extent, reconfigurable
interconnect. Due to the volume usage of these parts, costs are reduced and com-
monly used interfaces can be included. In addition to these benefits, the use of
a DSP has specific limitations. In general, for optimal performance, applications
must be written to utilize the resources available in the DSP. Although high-level
compilation systems which perform this function are becoming available [6,7],
often it is difficult to get exactly the mapping desired. Additionally, the interface
to memory may not be appropriate for specific applications, creating a bandwidth
bottleneck in getting data to functional units.

The 1990s have been characterized by the introduction of DSP to the mass
commercial market. DSP has made the transition from a fairly academic acronym
to one seen widely in advertisements for consumer electronics and software pack-
ages. A battle over the DSP market has ensued primarily between PDSP manufac-
turers, ASIC vendors, and developers of two types of general-purpose processor,
desktop microprocessors and high-end microcontrollers. General-purpose proces-
sors, such as the Intel Pentium, can provide much of the signal processing needed
for desktop applications such as audio and video processing, especially because
the host microprocessor is already resident in the system and has highly optimized
I/O and extensive software development tools. However, general-purpose desk-
top processors are not a realistic alternative for embedded systems due to their
cost and lack of power efficiency in implementing DSP. Another category of
general-purpose processors is the high-end microcontroller. These chips have also
made inroads into DSP applications by presenting system designers with straight-
forward implementation solutions that have useful data interfaces and significant
application-level flexibility.

One DSP hardware implementation compromise that has developed re-
cently has been the development of domain-specific standard products in both
programmable and ASIC formats. The PDSP community has determined that
because certain applications have a high volume, it is worthwhile to tailor particu-
lar PDSPs to domain-specific markets. This has led to the availability of inexpen-
sive, commodity silicon while allowing users to provide application differentia-
tion in software. ASICs have also been developed for more general functions



like MPEG decoding, in which standards have been set up to allow a large number
of applications to use the same basic function.

Reconfigurable computing platforms for DSP offer an intermediate solution
to ASICs, PDSPs, and general and domain-specific processors by allowing recon-
figurable and specialized performance on a per-application basis. Although this
emerging technology has primarily been applied to experimental rather than com-
mercial systems, the application-level potential for these reconfigurable platforms
is great. Following an examination of the needs of contemporary DSP applica-
tions, current trends in the application of reconfigurable computing to DSP are
explored.

2.2 The Changing World of DSP Applications

Over the past 30 years, the application space of digital signal processing has
changed substantially, motivating new systems in the area of reconfigurable com-
puting. New applications over this time span have changed the definition of DSP
and have created new and different requirements for implementation. For exam-
ple, in today’s market, DSP is often found in human–computer interfaces such
as sound cards, video cards, and speech recognition system—application areas
with limited practical significance just a decade ago. Because a human is an integral
part of these systems, different processing requirements can be found, in contrast
to communications front ends such as those found in DSL modems from Broadcom
[8] or CDMA (code division multiple access) receiver chips from Qualcomm [9].
Another large recent application of DSP has been in the read circuitry of hard-
drive and CD/DVD storage systems [10]. Although many of the DSP algorithms
are the same as in modems, the system constraints are quite different.

Consumer products now make extensive use of DSP in low-cost and low-
power implementations [11]. Both wireless and multimedia, two of the hottest
topics in consumer electronics, rely heavily on DSP implementation. Cellular
telephones, both GSM (global system for mobile communication) and CDMA,
are currently largely enabled by custom silicon [12], although trends toward other
implementation media such as PDSPs are growing. Modems for DSL, cable,
local area networks (LANs), and, most recently, wireless all rely on sophisticated
adaptive equalizers and receivers. Satellite set-top boxes rely on DSP for satellite
reception using channel decoding as well as an MPEG decoder ASIC for video
decompression. After the set-top box, the DVD player has now emerged as the
fastest-growing consumer electronics product. The DVD player relies on DSP to
avoid intersymbol interference, allowing more bits to be packed into a given area
of disk. In the commercial video market, digital cameras and camcorders are
rapidly becoming affordable alternatives to traditional analog cameras, largely
supported by photo-editing, authoring software, and the Web.



Development of a large set of DSP systems has been driven indirectly by
the growth of consumer electronics. These systems include switching stations for
cellular, terrestrial, satellite and cable infrastructure as well as cameras, authoring
studios, and encoders used for content production. New military and scientific
applications applied to the digital battlefield, including advanced weapons sys-
tems and remote sensing equipment, all rely on DSP implementation that must
operate reliably in adverse and resource-limited environments. Although existing
DSP implementation choices are suitable for all of these consumer and military-
driven applications, higher performance, efficiency, and flexibility will be needed
in the future, driving current interest in reconfigurable solutions.

In all of these applications, data processing is considerably more sophisti-
cated than the traditional filters and transforms which characterized DSP of the
1960s and 1970s. In general, performance has grown in importance as data rates
have increased and algorithms have become more complex. Additionally, there
is an increasing demand for flexible and diverse functionality based on environ-
mental conditions and workloads. Power and cost are equally important because
they are critical to overall system cost and performance.

Although new approaches to application-specific DSP implementation have
been developed by the research community in recent years, their application in
practice has been limited by the market domination of PDSPs and the reluctance
of designers to expose schedule and risk-sensitive ASIC projects to nontraditional
design approaches. Recently, however, the combination of new design tools and
the increasing use of intellectual property cores [13] in DSP implementations
have allowed some of these ideas to find wider use. These implementation choices
include systolic architectures, alternative arithmetic (residue number system
[RNS], logarithmic number system [LNS], digital-serial), word-length optimiza-
tion, parallelizing transformations, memory partitioning, and power optimization
techniques. Design tools have also been proposed which could close the gap
between software development and hardware development for future hybrid DSP
implementations. In subsequent sections, it will be seen that these tools will be
helpful in defining the appropriate application of reconfigurable hardware to ex-
isting challenges in DSP. In many cases, basic design techniques used to develop
ASICs or domain-specific devices can be reapplied to customize applications in
programmable silicon by taking the limitations of the implementation technology
into account.

3 A BRIEF HISTORY OF RECONFIGURABLE COMPUTING

Since their introduction in the mid-1980s, field programmable gate arrays
(FPGAs) have been the subject of extensive research and experimentation. In
this section, reconfigurable device architecture and system integration is investi-



gated with an eye toward identifying trends likely to affect future development.
Although this summary provides sufficient background to evaluate the impact
of reconfigurable hardware on DSP, more thorough discussions of FPGAs and
reconfigurable computing can be found in Refs. 14–17.

3.1 Field Programmable Devices

The concept of a digital hardware device which supports programmable logic
was originated in the early 1960s with the introduction of cellular arrays. These
devices contained built-in logic structures whose functionality could be set either
in the final stages of production or in the field. Early cellular arrays, such as the
Maitra cascade [18], contained extremely simple logic cells and supported linear,
near-neighbor interblock connectivity. Each cell could generally perform a
single-output Boolean function of two inputs which was determined through a
programmable mask set late in the device fabrication process. Field programma-
ble technology became a reality in the mid-1960s with the introduction of cutpoint
cellular logic [19]. Like Maitra cascades, these devices contained a fixed intercon-
nection between cells, but the logic functionality of each cell could be pro-
grammed in the field. Customization was typically accomplished by blowing
programmable cell fuses through the use of programming currents or photocon-
ductive exposure [19]. A direct forerunner of today’s SRAM-based FPGA was
a programmable array proposed and implemented by Wahlstrom [20] in 1967.
Like today’s FPGA devices, the operation of each logic cell was controlled by
a user-defined bit stream which determined both internal logic functionality and
connectivity to adjacent intercell wires and buses. The array could be repro-
grammed to implement a variety of logic circuits and to accommodate in-field
operational faults. Extensions and analysis of Wahlstrom’s array were later docu-
mented in Ref. 21.

The modern era of reconfigurable computing was ushered in by the intro-
duction of the first commercial SRAM-based FPGAs by Xilinx Corporation [22]
in 1986. These early reprogrammable devices and subsequent offerings from both
Xilinx and Altera Corporation [23] contain a collection of fine-grained program-
mable logic blocks interconnected via wires and programmable switches. Logic
functionality for each block is specified via a small programmable memory, called
a look-up table, driven by a limited number of inputs (typically less than five)
which generates a single Boolean output. Additionally, each logic block typically
contains one or more flip-flops for fine-grained storage. Although early FPGA
architectures contained small numbers of logic blocks (typically less than 100),
new device families have quickly grown to capacities of tens of thousands of
look-up tables containing millions of gates of logic. As shown in Figure 2, fine-
grained look-up table/flip-flop pairs are frequently grouped into tightly connected
coarse-grained blocks to take advantage of circuit locality. Interconnection be-



Figure 2 Simplified Xilinx Virtex logic block. Each logic block consists of two 2-LUT
(look-up table) slices. (From Ref. 26.)



Figure 3 Growth of FPGA gate capacity.

tween logic blocks is provided via a series of wire segments located in channels
between the blocks. Programmable pass transistors and multiplexers can be used
to provide both block-to-segment connectivity and segment-to-segment connec-
tions.

Much of the recent interest in reconfigurable computing has been spurred
by the development and maturation of field programmable gate arrays. The recent
development of systems based on FPGAs has been greatly enhanced by an expo-
nential growth rate in the gate capacity of reconfigurable devices and improved
device performance due to shrinking die sizes and enhanced fabrication tech-
niques. As shown in Figure 3, reported gate counts [24–26] for look-up table
(LUT)-based FPGAs, from companies such as Xilinx Corporation, have roughly
followed Moore’s law over the past decade.* This increase in capacity has en-
abled complex structures such as multitap filters and small RISC processors to
be implemented directly in a single FPGA chip. Over this same time period, the
system performance of these devices has also improved exponentially. Whereas
in the mid-1980s, system-level FPGA performance of 2–5 MHz was considered
acceptable, today’s LUT-based FPGA designs frequently approach performance

* In practice, usable gate counts for devices are often significantly lower than reported data book
values (by about 20–40%). Generally, the proportion of per-device logic that is usable has remained
roughly constant over the years, as indicated in Figure 3.



levels of 60 MHz and beyond. Given the programmable nature of reconfigurable
devices, the performance penalty of a circuit implemented in reprogrammable
technology versus a direct ASIC implementation is generally a factor on the order
of 5 to 10.

3.2 Early Reprogrammable Systems

The concept of using reprogrammable logic to enhance the functional capabilities
of a computing system is generally credited to Gerald Estrin [27]. In a feasibility
study performed in the early 1960s, a digital system is described that contains
both a sequential processor and a programmable logic core which can change
logic functionality on a per-application basis. Even though a functioning hard-
ware system based on the concept was not built, the study outlined the potential
of application-level specialization of system hardware. Estrin’s work motivated
the later analysis of the use of cellular arrays for basic-block-level computation
[28]. In this subsequent study, the potential of reconfigurability for use in design
verification and algorithm development is addressed, setting the stage for contem-
porary multi-FPGA prototyping and development platforms.

Soon after the commercial introduction of the FPGA, computer architects
began devising approaches for leveraging new programmable technology in com-
puting systems. As summarized in Ref. 16, the evolution of reconfigurable com-
puting was significantly shaped by two influential projects: Splash II [29] and
Programmable Active Memories (PAM) [30]. Each of these projects addressed
important programmable system issues regarding programming environment,
user interface, and configuration management by applying pre-existing computa-
tional models in the areas of special-purpose coprocessing and statically sched-
uled communication to reconfigurable computing.

Splash II is a multi-FPGA parallel computer which uses orchestrated sys-
tolic communication to perform inter-FPGA data transfer. As shown in Figure
4, each board of multiboard Splash II systems contains 16 Xilinx XC4000 series
FPGA processors (labeled with an X prefix), each with associated SRAM (labeled
with an M prefix). Unlike its multi-FPGA predecessor, Splash [31], which was
limited to strictly near-neighbor systolic communication, each Splash II board
contains inter-FPGA crossbars for multihop data transfer and broadcast. Software
development for the system typically involves the creation of VHDL (VHSIC hard-
ware description language) circuit descriptions for individual systolic processors.
These designs must meet size and performance constraints of the target FPGAs.
Following processor creation, high-level inter-FPGA scheduling software is used
to ensure that systemwide communication is synchronized. In general, the system
is not dynamically reconfigured during operation. For applications with single in-
struction multiple data (SIMD) characteristics, a compiler [32] has been created to
automatically partition processing across FPGAs and to synchronize interfaces to



Figure 4 Two-board Splash II system. (From Ref. 29.)

local SRAMs. Numerous DSP applications have been mapped to Splash II, includ-
ing audio and video algorithm implementations. These applications are described
in greater detail in Section 5. Recently, FPGA-based systolic architectures based
on the Splash II system have been developed by Annapolis Micro Systems [33].
The company’s peripheral component interface (PCI) based Wildforce system
contains five Xilinx XC4000XL devices aligned in a systolic chain. A similar,
VME-based Wildstar board contains four Xilinx Virtex devices.

As shown in Figure 5, Programmable active memory DECPeRLe-1 system
[30] contain arrangements of FPGA processors (labeled X) in a two-dimensional
mesh with memory devices (labeled M) aligned along the array perimeter. PAMs
were designed to create the architectural appearance of a functional memory for
a host microprocessor and the PAM programming environment reflects this. From
a programming standpoint, the multi-FPGA PAM can be accessed like a memory
through an interface FPGA, XI, with written values treated as inputs and read
values used as results. Designs are generally targeted to PAMs through hand-
crafting of design subtasks, each appropriately sized to fit on an FPGA. The PAM



Figure 5 Programmable active memory DECPeRLe-1 system. (From Ref. 30.)

array and its successor, the Pamette [34], are interfaced to a host workstation
through a backplane bus. Additional discussion of PAMs with regard to DSP
applications appears in Section 5.

3.3 Reconfigurable Computing Research Directions

Over the past decade, interest in reconfigurable systems has progressed along
four main paths [15]:

1. The proximity of reconfigurable hardware to a host CPU
2. The capability of hardware to support dynamic reconfiguration
3. Software support for high-level compilation and dynamic reconfigura-

tion
4. The granularity of reconfigurable elements

Active research in these areas continues today in addition to a search for
applications well-suited to the available architectural parameters.

As a result of the Prism I project [35], the first reconfigurable system which
tightly coupled an off-the-shelf processor with an FPGA coprocessor was created.
This project explored the possibility of augmenting the instruction set of a proces-
sor with special-purpose instructions that could be executed by an attached FPGA
coprocessor in place of numerous processor instructions. For these instructions,
the microprocessor would stall for several cycles while the FPGA-based
coprocessor completed execution. More recently, the single-chip Napa [36] and
OneChip [37] architectures have used similar approaches to synchronize pro-



cessing between RISC processors and FPGA cores. As chip integration levels
have increased, interest in tightly coupling both processor and reconfigurable
resources at multiple architectural levels has grown. Single-chip architectures,
such as Garp [38], now allow interfacing between processors and reconfigurable
resources, both through coprocessor interfaces and through a shared data cache.
A second approach to integrating reconfigurable logic and microprocessors has
explored integrating reconfigurable logic inside the processor as special-purpose
functional units. Although early approaches in this area attempted to keep recon-
figurable functional unit timing consistent with other nonconfigurable resources
[39], newer reconfigurable functional units [40] allow multicycle operation syn-
chronized by the microprocessor control path.

An important aspect of reconfigurable devices is the ability to reconfigure
functionality in response to changing operating conditions and application data-
sets. Although SRAM-based FPGAs have supported slow millisecond reconfigu-
ration rates for some time, only recently have devices been created that allow
for rapid device reconfiguration at run time. Dynamically reconfigurable FPGAs,
or DPGAs [41,42], contain multiple interconnect and logic configurations for
each programmable location in a reconfigurable device. Often these architectures
are designed to allow configuration switching in a small number of system clock
cycles, measuring nanoseconds rather than milliseconds. Although several DPGA
devices have been developed in research environments, only one has been devel-
oped commercially. The Context Switching FPGA [43], developed commercially
by Sanders Corporation, can simultaneously hold up to four complete configura-
tion contexts. A context switch for the device can be performed in a single clock
cycle. During the context switch, all internal data stored in registers are preserved.
To promote reconfiguration at lower hardware cost, several commercial FPGA
families [26,44] have been introduced that allow for fast, partial reconfiguration
of FPGA functionality from off-chip memory resources. A significant challenge
to the use of these reconfigurables is the development of compilation software
which will partition and schedule the order in which computation will take place
and will determine which circuitry must be changed. Although some preliminary
work in this area has been completed [45,46], more advanced tools are needed
to fully leverage the new hardware technology. Other software approaches that
have been applied to dynamic reconfiguration include the definition of hardware
subroutines [47] and the dynamic reconfiguration of instruction sets [48].

Although high-level compilation for microprocessors has been an active
research area for decades, development of compilation technology for reconfi-
gurable computing is still in its infancy. The compilation process for FPGA-based
system is often complicated by a lack of identifiable coarse-grained structure in
fine-grained FPGAs and the dispersal of logic resources across many pin-limited
reconfigurable devices on a single computing platform. In particular, because
most reconfigurable computers contain multiple programmable devices, design



partitioning forms an important aspect of most compilation systems. Several
compilation systems for reconfigurable hardware [49,50] have followed a tradi-
tional multidevice ASIC design flow involving pin-constrained device parti-
tioning and individual device synthesis using RTL compilation. To overcome
pin limitations and achieve full logic utilization on a per-device basis using this
approach, either excessive internal device interconnect [49] or I/O counts [51]
have been needed. In Ref. 52, a hardware virtualization approach is outlined
that promotes high per-device logic utilization. Following design partitioning and
placement, inter-FPGA wires are scheduled on interdevice wires at compiler-
determined time slices, allowing pipelining of communication. Interdevice pipe-
lining also forms the basis of several FPGA system compilation approaches that
start at the behavioral level. A high-level synthesis technique described in Ref. 53
outlines inter-FPGA scheduling at the RTL level. In Refs. 54 and 55, functional
allocation is performed that takes into account the amount of logic available in
the target system and available interdevice interconnect. Combined communica-
tion and functional resource scheduling is then performed to fully utilize available
logic and communication resources. In Ref. 56, inter-FPGA communication and
FPGA-memory communication are virtualized because it is recognized that mem-
ory rather than inter-FPGA bandwidth is frequently the critical resource in recon-
figurable systems. In Ref. 57, linear programming is used to partition MATLAB
functions across sets of heterogeneous resources, including DSPs, RISC proces-
sors, and FPGAs. Scheduling, pipelining, and component-specific compilation
are performed following partitioning to complete the mapping process.

4 THE PROMISE OF RECONFIGURABLE COMPUTING
FOR DSP

Many of the motivations and goals of reconfigurable computing are consistent
with the needs of signal processing applications. It will be seen in Section 5 that
the deployment of DSP algorithms on reconfigurable hardware has aided in the
advancement of both fields over the past 15 years. In general, the direct benefits
of the reconfigurable approach for DSP can be summarized in three critical areas:
functional specialization, platform reconfigurability, and fine-grained parallelism.

4.1 Specialization

As stated in Section 2.1, programmable digital signal processors are optimized
to deliver efficient performance across a set of signal processing tasks. Although
the specific implementation of tasks can be modified through instruction-
configurable software, applications must frequently be customized to meet spe-
cific processor architectural aspects, often at the cost of performance. Currently,



most DSPs remain inherently sequential machines, although some parallel VLIW
and multifunction unit DSPs have recently been developed [58]. The use of recon-
figurable hardware has numerous advantages for many signal processing systems.
For many applications, such as digital filtering, it is possible to customize irregu-
lar datapath widths and specific constant values directly in hardware, reducing
implementation area and power and improving algorithm performance. Addition-
ally, if standards change, the modifications can quickly be reimplemented in hard-
ware without expensive NRE costs. Because reconfigurable devices contain
SRAM-controlled logic and interconnect switches, application programs in the
form of device configuration data can be downloaded on a per-application basis.
Effectively, this single, wide program instruction defines hardware behavior.
Contemporary reconfigurable computing devices have little or no NRE cost be-
cause off-the-shelf development tools are used for design synthesis and layout.
Although reconfigurable implementations may exhibit a 5–10 times performance
reduction compared to the same circuit implemented in custom logic, limited
manual intervention is generally needed to map a design to a reconfigurable de-
vice. In contrast, substantial NRE costs require ASIC designers to focus on high-
speed physical implementation often involving hand-tuned physical layout and
near-exhaustive design verification. Time-consuming ASIC implementation tasks
can also lead to longer time-to-market windows and increased inventory, effec-
tively becoming the critical path link in the system design chain.

4.2 Reconfigurability

Most reconfigurable devices and systems contain SRAM-programmable memory
to allow full logic and interconnect reconfiguration in the field. Despite a wide
range of system characteristics, most DSP systems have a need for configurability
under a variety of constraints. These constraints include environmental factors
such as changes in statistics of signals and noise, channel, weather, transmission
rates, and communication standards. Although factors such as data traffic and
interference often change quite rapidly, other factors such as location and weather
change relatively slowly. Still other factors regarding communication standards
vary infrequently across time and geography, limiting the need for rapid recon-
figuration. Some specific ways that DSP can directly benefit from hardware re-
configuration to support these factors include the following:

• Field customization: The reconfigurability of programmable devices
allows periodic updates of product functionality as advanced vendor
firmware versions become available or product defects are detected.
Field customization is particularly important in the face of changing
standards and communication protocols. Unlike ASIC implementations,
reconfigurable hardware solutions can generally be quickly updated



based on application demands without the need for manual field up-
grades or hardware swaps.

• Slow adaptation: Signal processing systems based on reconfigurable
logic may need to be periodically updated in the course of daily opera-
tion based on a variety of constraints. These include issues such as
variable weather and operating parameters for mobile communication
and support for multiple, time-varying standards in stationary receivers.

• Fast adaptation: Many communication processing protocols [59] re-
quire nearly constant re-evaluation of operating parameters and can
benefit from rapid adjustment of computing parameters. Some of these
issues include adaptation to time-varying noise in communication chan-
nels, adaptation to network congestion in network configurations, and
speculative computation based on changing datasets.

4.3 Parallelism

An abundance of programmable logic facilitates the creation of numerous func-
tional units directly in hardware. Many characteristics of FPGA devices, in partic-
ular, make them especially attractive for use in digital signal processing systems.
The fine-grained parallelism found in these devices is well matched to the high
sample rates and distributed computation often required of signal processing ap-
plications in areas such as image, audio, and speech processing. Plentiful FPGA
flip-flops and a desire to achieve accelerated system clock rates have led designers
to focus on heavily pipelined implementations of functional blocks and interblock
communication. Given the highly pipelined and parallel nature of many DSP
tasks, such as image and speech processing, these implementations have exhibited
substantially better performance than standard PDSPs. In general, these systems
have been implemented using both task and functional unit pipelining. Many
DSP systems have featured bit-serial functional unit implementations [60] and
systolic interunit communication [29] that can take advantage of the synchroniza-
tion resources of contemporary FPGAs without the need for software instruction
fetch and decode circuitry. As detailed in Section 5, bit-serial implementations
have been particularly attractive due to their reduced implementation area. How-
ever, as reconfigurable devices increase in size, more nibble-serial and parallel
implementations of functional units have emerged in an effort to take advantage
of data parallelism.

Recent additions to reconfigurable architectures have aided their suitability
for signal processing. Several recent architectures [26,61] have included 2–4-
kbit SRAM banks that can be used to store small amounts of intermediate data.
This allows for parallel access to data for distributed computation. Another im-
portant addition to reconfigurable architectures has been the capability to rapidly
change only small portions of device configuration without disturbing existing



device behavior. This feature has recently been leveraged to help adapt signal
processing systems to reduce power [62]. The speed of adaptation may vary de-
pending on the specific signal processing application area.

5 HISTORY OF RECONFIGURABLE COMPUTING
AND DSP

Since the appearance of the first reconfigurable computing systems, DSP applica-
tions have served as important test cases in reconfigurable architecture and soft-
ware development. In this section, a wide range of DSP design approaches and
applications that have been mapped to functioning reconfigurable computing sys-
tems are considered. Unless otherwise stated, the design of complete DSP sys-
tems is stressed, including I/O, memory interfacing, high-level compilation, and
real-time issues rather than the mapping of individual benchmark circuits. For
this reason, a large number of FPGA implementations of basic DSP functions
like filters and transforms that have not been implemented directly in system
hardware have been omitted. Although our consideration of the history of DSP
and reconfigurable computing is roughly chronological, some noted recent trends
were initially investigated a number of years ago. To trace these trends, recent
advancements are directly contrasted with early contributions.

5.1 FPGA Implementation of Arithmetic

Soon after the introduction of the FPGA in the mid-1980s, an interest developed
in using the devices for DSP, especially for digital filtering which can take advan-
tage of specialized constants embedded in hardware. Because a large portion of
most filtering approaches involves the use of multiplication, efficient multiplier
implementations in both fixed and floating points were of particular interest.
Many early FPGA multiplier implementations used circuit structures adapted
from the early days of large-scale integration (LSI) development and reflected
the restricted circuit area available in initial FPGA devices [55]. As FPGA capaci-
ties have increased, the diversity of multiplier implementations has grown.

Since the introduction of the FPGA, bit-serial arithmetic has been used
extensively to implement FPGA multiplication. As shown in Figure 6, taken from
[Ref. 55], bit-serial multiplication is implemented using a linear systolic array
that is well suited to the fine-grained nature of FPGAs. Two data values are
input into the multiplier, including a parallel value in which all bits are input
simultaneously and a sequential value in which values are input serially. In gen-
eral, a data sampling rate of one value every M clock cycles can be supported,
where M is the input word length. Each cell in the systolic array is typically
implemented using one to four logic blocks similar to the one shown in



Figure 6 Bit-serial adder and multiplier. (From Ref. 55.)

Figure 2. Bit-serial approaches have the advantage that communication demands
are independent of word length. As a result, low-capacity FPGAs can efficiently
implement them. Given their pipelined nature, bit-serial multipliers implemented
in FPGAs typically possess excellent area–time products. Many bit-serial for-
mulations have been applied to finite impulse response filtering [63]. Special-
purpose bit-serial implementations have included the canonic signed digit [64]
and the power-of-2 sum or difference [65].

Given the dual use of look-up tables as small memories, distributed arith-
metic (DA) has also been an effective implementation choice for LUT-based
FPGAs. Because it is possible to group multiple LUTs together into a larger
fanout memory, large LUTs for DA can easily be created. In general, distributed
arithmetic requires the embedding of a fixed-input constant value in hardware,
thus allowing the efficient precomputation of all possible dot-product outputs.
An example of a distributed arithmetic multiplier, taken from Ref. 55, appears
in Figure 7. It can be seen that a fast adder can be used to sum partial products
based on nibble look-up. In some cases, it may be effective to implement the
LUTs as RAMs so that new constants can be written during execution of the
program.

To promote improved performance, several parallel arithmetic implementa-
tions on FPGAs have been formulated [55]. In general, parallel multipliers imple-
mented in LUT-based FPGAs achieve a speedup of sixfold in performance when
compared to their bit-serial counterparts with an area penalty of 2.5-fold. Specific
parallel implementations of multipliers include a carry-save implementation [66],
a systolic array with cordic arithmetic [67], and pipelined parallel [63,68,69].

As FPGA system development has intensified, more interest has been given
to upgrading the accuracy of calculation performed in FPGAs, particularly
through the use of floating-point arithmetic. In general, floating-point operations
are difficult to implement in FPGAs due to the complexity of implementation



Figure 7 Distributed arithmetic multiplier. (From Ref. 55.)

and the amount of hardware needed to achieve desired results. For applications
requiring extended precision, floating point is a necessity. In Ref. 70, an initial
attempt was made to develop basic floating-point approaches for FPGAs that met
IEEE-754 standards for addition and multiplication. Area and performance were
considered for various FPGA implementations, including shift-and-add, carry-
save, and combinational multiplier. Similar work was explored in Ref. 71, which
applied 18-bit-wide floating-point adders/subtractors, multipliers, and dividers to
2D fast Fourier transform (FFT) and systolic FIR (finite impulse response) filters
implemented on Splash II. This work was extended to a full 32-bit floating point
in Ref. 72 for multipliers based on bit-parallel adders and digit-serial multipliers.
More recent work [73] re-examines these issues with an eye toward greater area
efficiency.

5.2 Reconfigurable DSP System Implementation

Although recent research in reconfigurable computing has been focused on ad-
vanced issues such as dynamic reconfiguration and special-purpose architecture,
most work to date has been focused on the effective use of application paralleliza-
tion and specialization. In general, a number of different DSP applications have
been mapped to reconfigurable computing systems containing one, several, and



many FPGA devices. In this subsection, a number of DSP projects that have
been mapped to reconfigurable hardware are described. These implementations
represent a broad set of DSP application areas and serve as a starting point for
advanced research in years to come.

5.2.1 Image Processing Applications

The pipelined and fine-grained nature of reconfigurable hardware is a particularly
good match for many image processing applications. Real-time image processing
typically requires specialized datapaths and pipelining which can be implemented
in FPGA logic. A number of projects have been focused in this application area.
In Refs. 74 and 75, a set of image processing tasks mapped to the Splash II
platform, described in Section 3.2, are outlined. Tasks such as Gaussian pyramid-
based image compression, image filtering with 1D and 2D transforms, and image
conversion using discrete fourier transform (DFT) operations are discussed. This
work was subsequently extended to include the 2D discrete cosine transform
(DCT) implemented on the Splash II platform in Ref. 76. The distributed con-
struction of a stand-alone Splash II system containing numerous physical I/O
ports is shown to be particularly useful in achieving high data rates. Because
Splash II is effective in implementing systolic versions of algorithms that require
repetitive tasks with data shifted in a linear array, image data can quickly be
propagated in a processing pipeline. The targeted image processing applications
are generally implemented as block-based systolic computations, with each
FPGA operating as a systolic processor and groups of FPGAs performing specific
tasks.

Additional reconfigurable computing platforms have also been used to per-
form image processing tasks. In Ref. 77, a commercial version of PAM, the
turbochannel-based Pamette [34], is interfaced to a charge-coupled device (CCD)
camera and a liquid-crystal polarizing filter is used to perform solar polarimetry.
The activity of this application is effectively synchronized with software on an
Alpha workstation. In Refs. 50 and 78, multi-FPGA systems are used to process
3D volume visualization data though ray casting. These implementations show
favorable processing characteristics when compared to traditional microproces-
sor-based systems. In Ref. 79, a system is described in which a 2D DCT is imple-
mented using a single FPGA device attached to a backplane bus-based processing
card. This algorithm implementation uses distributed arithmetic and is initially
coded in VHDL and subsequently compiled using RTL synthesis tools. In Ref.
80, a commercial multi-FPGA system is described that is applied to spatial me-
dian filtering. In Ref. 81, the application of a PCI-based FPGA board to 1D and
2D convolution is presented. Finally, in Ref. 82, a system implemented with a
single-FPGA processing board is described that performs image interpolation.
This system primarily uses bit-serial arithmetic and exploits dynamic reconfigu-



ration to quickly swap portions of the computation located in the reconfigurable
hardware. Each computational task has similar computational structure, so recon-
figuration time of the FPGA is minimal.

5.2.2 Video Processing Applications

Like image processing, video processing requires substantial data bandwidth and
processing capability to handle data obtained from analog video equipment. To
support this need, several reconfigurable computing platforms have been adapted
for video processing. The PAM system [30], described in Section 3.2, was the
first platform used in video applications. A PAM system programmed to perform
stereo vision was applied to applications requiring 3D elevation maps such as
those needed for planetary exploration. A stereo-matching algorithm was imple-
mented that was shown to be substantially faster than programmable DSP-based
approaches. This implementation employed dynamic reconfiguration by requiring
the reconfiguration of programmable hardware among three distinct processing
tasks at run time. A much smaller single-FPGA system, described in Ref. 83,
was focused primarily on block-based motion estimation. This system tightly
coupled SRAM to a single FPGA device to allow for rapid data transfer.

An interesting application of FPGAs for video computation is described in
Ref. 84. A stereo transform is implemented across 16 FPGA devices by aligning
two images together to determine the depth between the images. Scan lines of
data are streamed out of adjacent memories into processing FPGAs to perform
the comparison. In an illustration of the benefit of a single-FPGA video system,
in Ref. 85 a processing platform is described in which a T805 transputer is tightly
coupled with an FPGA device to perform frame object tracking. In Ref. 86, a
single-FPGA video coder, which is reconfigured dynamically among three differ-
ent subfunctions (motion estimation, DCT, and quantization), is described. The
key idea in this project is that the data located in hardware do not move, but
rather the functions which operate on it are reconfigured in place.

5.2.3 Audio and Speech Processing

Whereas audio processing typically requires less bandwidth than video and image
processing, audio applications can benefit from datapath specialization and pipe-
lining. To illustrate this point, a sound synthesizer was implemented using the
multi-FPGA PAM system [30], producing real-time audio of 256 different voices
at up to 44.1 kHz. Primarily designed for the use of additive synthesis techniques
based on look-up tables, this implementation included features to allow frequency
modulation synthesis and/or nonlinear distortion and was also used as a sampling
machine. The physical implementation of PAM as a stand-alone processing sys-
tem facilitated interfacing to tape recorders and audio amplifiers. The system



setup was shown to be an order-of-magnitude faster than a contemporary off-
the-shelf DSP.

Other smaller projects have also made contributions in the audio and speech
processing areas. In Ref. 87, a methodology is described to perform audio pro-
cessing using a dynamically reconfigurable FPGA. Audio echo production is fa-
cilitated by dynamically swapping filter coefficients and parameters into the de-
vice from an adjacent SRAM. Third-party DSP tools are used to generate the
coefficients. In Ref. 69, an inventive FPGA-based cross-correlator for radio as-
tronomy is described. This system achieves high processing rates of 250 MHz
inside the FPGA by heavily pipelining each aspect of the data computation. To
support speech processing, a bus-based multi-FPGA board, Tabula Rasa [88],
was programmed to perform Markov searches of speech phenomes. This system
is particularly interesting because it allowed the use of behavioral partitioning
and contained a codesign environment for specification, synthesis, simulation,
and evaluation design phases.

5.2.4 Target Recognition

Another important DSP application that has been applied to Splash II is target
recognition [89]. To support this application, images are broken into columns
and compared to precomputed templates stored in local memory along with pipe-
lined video data. As described in Section 3.2, near-neighbor communication is
used with Splash II to compare pass-through pixels with stored templates in the
form of partial sums. After an image is broken into pieces, the Splash II imple-
mentation performs second-level detection by roughly identifying sections of sub-
images that conform to objects through the use of templates. In general, the use
of FPGAs provides a unique opportunity to quickly adapt target recognition to
new algorithms, something not possible with ASICs. In another FPGA implemen-
tation of target recognition, researchers [90] broke images into pieces called chips
and analyzed them using a single FPGA device. By swapping target templates
dynamically, a range of targets may be considered. To achieve high-performance
design, templates were customized to meet the details of the target technology.
In Ref. 91, a description is given of a novel software system that is used to map
a high-level description of a target recognition algorithm to a multi-FPGA system.
This software tool set converts algorithmic descriptions previously targeted to
the Khoros [92] design environment into a format which can be loaded into a
Wildforce system from Annapolis Micro Systems [33].

5.2.5 Communication Coding

In modern communication systems, signal-to-noise ratios make data coding an
important aspect of communication. As a result, convolutional coding can be
used to improve signal-to-noise ratios based on the constraint length of codes



without increasing the power budget. Several reconfigurable computing systems
have been configured to aid in the transmission and receipt of data. One of the
first applications of reconfigurable hardware to communications involved the
PAM project [30]. On-board PAM system RAM was used to trace through 214

possible states of a Viterbi encoder, allowing for the computation of 4 states per
clock cycle. The flexibility of the system allowed for quick evaluation of new
encoding algorithms. A run-length Viterbi decoder, described in Ref. 93, was
created and implemented using a large reconfigurable system containing 36
FPGA devices. This constraint length 14 decoder was able to achieve decode
rates of up to 1 Mbit/sec. In Ref. 94, a single-FPGA system is described that
supports variable-length code detection at video transfer rates.

5.3 Reconfigurable Computing Architecture and Compiler
Trends for DSP

Over the past decade, the large majority of reconfigurable computing systems
targeted to DSP have been based on commercial FPGA devices and have been
programmed using RTL and structural hardware description languages. Although
these architectural and programming methodologies have been sufficient for ini-
tial prototyping, more advanced architectures and programming languages will
be needed in the future. These advancements will especially be needed to support
advanced features such as dynamic reconfiguration and high-level compilation
over the next few years. In this subsection, recent trends in reconfigurable com-
puting-based DSP with regard to architecture and compilation are explored.
Through near-term research advancement in these important areas, the breadth
of DSP applications that are appropriate for reconfigurable computing is likely
to increase.

5.3.1 Architectural Trends

Most commercial FPGA architectures have been optimized to perform efficiently
across a broad range of circuit domains. Recently, these architectures have been
changed to better suit specific application areas.

Specialized FPGA Architectures for DSP. Several FPGA architectures
specifically designed for DSP have been proposed over the past decade. In Ref.
95, a fine-grained programmable architecture is considered that uses a customized
LUT-based logic cell. The cell is optimized to efficiently perform addition and
multiplication through the inclusion of XOR gates within LUT-based logic
blocks. Additionally, device intercell wire lengths are customized to accommo-
date both local and global signal interconnections. In Ref. 96, a specialized DSP
operator array is detailed. This architecture contains a linear array of adders and
shifters connected to a programmable bus and is shown to efficiently implement



FIR filters. In Ref. 97, the basic cell of a LUT-based FPGA is augmented to
include additional flip-flops and multiplexers. This combination allows for tight
interblock communication required in bit-serial DSP processing. External routing
was not augmented for this architecture due to the limited connectivity required
by bit-serial operation.

Whereas fine-grained look-up table FPGAs are effective for bit-level com-
putations, many DSP applications benefit from modular arithmetic operations.
This need has led to an interest in reconfigurables with coarse-grained functional
units. One such device, Paddi [98], is a DSP-optimized parallel computing archi-
tecture that includes eight ALUs and localized memories. As part of the architec-
ture, a global instruction address is distributed to all processors, and instructions
are fetched from a local instruction store. This organization allows for high in-
struction and I/O bandwidth. Communication paths between processors are con-
figured through a communication switch and can be changed on a per-cyle basis.
The Paddi architecture was motivated by a need for high data throughput and
flexible datapath control in real-time image, audio, and video processing applica-
tions. The coarse-grained Matrix architecture [99] is similar to Paddi in terms of
block structure, but it exhibits more localized control. Whereas Paddi has a
VLIW-like control word which is distributed to all processors, Matrix exhibits
more multiple instruction multiple data (MIMD) characteristics. Each Matrix tile
contains a small processor, including a small SRAM and an ALU which can
perform 8 bit data operations. Both near-neighbor and length-4 wires are used
to interconnect individual processors. Interprocessor data ports can be configured
to support either static or data-dependent dynamic communication.

The ReMarc architecture [100], targeted to multimedia applications, was
designed to perform a SIMD-like computation with a single control word distrib-
uted to all processors. A 2D grid of 16-bit processors is globally controlled with
a SIMD-like instruction sequencer. Interprocessor communication takes place
either through near-neighbor interconnect or through horizontal and vertical
buses. The MorphoSys architecture [101] was also designed for SIMD operation,
but, unlike ReMarc, it offers support for efficient dynamic reconfiguration. Func-
tional blocks in this architecture can perform either 8- or 16-bit ALU operations.
A three-level hierarchy of interconnect provides for flexible interblock communi-
cation. The Chess architecture [102] is based on 4-bit ALUs and contains pipe-
lined near-neighbor interconnect. Each computational tile in the architecture con-
tains memory which can either store local processor instructions or local data
memory. The Colt architecture [103] was specially designed as an adaptable ar-
chitecture for DSP that allows interconnect reconfiguration. This coarse-grained
architecture allows run-time data to steer programming information to dynami-
cally determined points in the architecture. A mixture of both 1-bit and 16-bit
functional units allows both bit and word-based processing.



Whereas coarse-grained architectures organized in a 2D array offer signifi-
cant interconnect flexibility, often signal processing applications, such as filter-
ing, can be accommodated with a linear computational pipeline. Several coarse-
grained reconfigurable architectures have been created to address this class of
applications. PipeRench [104] is a pipelined, linear computing architecture that
consists of a sequence of computational stripes, each containing look-up tables
and data registers. The modular nature of PipeRench makes dynamic recon-
figuration on a per-stripe basis straightforward. Rapid [105] is a reconfigurable
device based on both linear data and control paths. The coarse-grained architec-
ture for this datapath includes multipliers, adders, and pipeline registers. Unlike
PipeRench, the interconnectbus for this architecture is segmented to allowfor nonlo-
cal data transfer. In general, communication patterns built using Rapid interconnect
are static, although some dynamic operation is possible. A pipelined control bus that
runs in parallel to the pipelined data can be used to control computation.

DSP Compilation Software for Reconfigurable Computing. Although
some high-level compilation systems designed to target DSP algorithms to recon-
figurable platforms have been outlined and partially developed, few complete
synthesis systems have been constructed. In Ref. 106, a high-level synthesis sys-
tem is described for reconfigurable systems that promotes high-level synthesis
from a behavioral synthesis language. For this system, DSP designs are repre-
sented as a high-level flowgraph and user-specified performance parameters in
terms of a maximum and minimum execution schedule are used to guide the
synthesis process. In Ref. 60, a compilation system is described that converts a
standard ANSI C representation of filter and FFT operations into a bit-serial cir-
cuit that can be applied to an FPGA or to a field programmable multichip module.
In Ref. 107, a compiler, debugger, and linker targeted to DSP data acquisition
is described. This work uses a high-level model of communicating processes to
specify computation and communication in a multi-FPGA system. By integrating
digital-to-analog (D/A) and A/D converters into the configurable platform, a
primitive digital oscilloscope is created.

The use of dynamic reconfiguration to reduce area overhead in computing
systems has recently motivated renewed interest in reconfigurable computing. Al-
though a large amount of work remains to be completed in this area, some prelimi-
nary work in the development of software to manage dynamic reconfiguration for
DSP has been accomplished. In Ref. 108, a method of specifying and optimizing
designs for dynamic reconfiguration is described. Through selective configuration
scheduling, portions of an application used for 2D image processing is dynamically
reconfigured based on need. Later work [46] outlined techniques based on bipartite
matching to evaluate which portions of an dynamic application should be recon-
figured. The technique is demonstrated using an image filtering example.



Several recent DSP projects address the need for both compile-time and
run-time management of dynamic reconfiguration. In Ref. 109, a run-time man-
ager is described for a single-chip reconfigurable computing system with a large
FIR filter used as a test case. In Ref. 45, a compile-time analysis approach to aid
reconfiguration is described. In this work, all reconfiguration times are statically
determined in advance and the compilation system determines the minimum cir-
cuit change needed at each run-time point to allow for reconfiguration. Bench-
mark examples which use this approach include arithmetic units for FIR filters
which contain embedded constants. Finally, in Ref. 62, algorithms are described
that perform dynamic reconfiguration to save DSP system power in time-varying
applications such as motion estimation. The software tool created for this work
dynamically alters the search space of motion vectors in response to changing
images. Because power in the motion estimation implementation is roughly corre-
lated with search space, a reduced search proves to be beneficial for applications
such as mobile communications. Additionally, unused computational resources
can be scheduled for use as memory or rescheduled for use as computing elements
as computing demands require.

Although the integration of DSP and reconfigurable hardware is just now
being considered for single-chip implementation, several board-level systems
have been constructed. GigaOps provided the first commercially available DSP
and FPGA board in 1994 containing an Analog Devices 2101 PDSP, 2 Xilinx
XC4010s, 256KB of SRAM, and 4MB of DRAM. This PC-based system was
used to implement several DSP applications, including image processing [110].
Another board-based DSP/FPGA product line is the Arix-C67 currently available
from MiroTech Corporation [111]. This system couples a Xilinx Virtex FPGA
with a TMS320C6701 DSP. In addition to supporting several PC-bus interfaces,
this system has an operating system, a compiler, and a suite of debugging soft-
ware.

6 THE FUTURE OF RECONFIGURABLE COMPUTING
AND DSP

The future of reconfigurable computing for DSP systems will be determined by
the same trends that affect the development of these systems today: system inte-
gration, dynamic reconfiguration, and high-level compilation. DSP applications
are increasingly demanding in terms of computational load, memory require-
ments, and flexibility. Traditionally, DSP has not involved significant run-time
adaptivity, although this characteristic is rapidly changing. The recent emergence
of new applications that require sophisticated, adaptive, statistical algorithms to
extract optimum performance has drawn renewed attention to run-time reconfi-
gurability. Major applications driving the move toward adaptive computation in-



clude wireless communications with DSP in hand-sets, base stations and satel-
lites, multimedia signal processing [112], embedded communications systems
found in disk drive electronics [10] and high-speed wired interconnects [113],
and remote sensing for both environmental and military applications [114]. Many
of these applications have strict constraints on cost and development time due
to market forces.

The primary trend impacting the implementation of many contemporary
DSP systems is Moore’s law, resulting in consistent exponential improvement
in integrated circuit device capacity and circuit speeds. According to the National
Technology Roadmap for Semiconductors, growth rates based on Moore’s law
are expected to continue until at least the year 2015 [115]. As a result, some of
the corollaries of Moore’s law will require new architectural approaches to deal
with the speed of global interconnect, increased power consumption and power
density, and system and chip-level defect tolerance. Several architectural ap-
proaches have been suggested to allow reconfigurable DSP systems to make
the best use of large amounts of VLSI resources. All of these architectures are
characterized by heterogeneous resources and novel approaches to intercon-
nection. The term system-on-a-chip is now being used to describe the level of
complexity and heterogeneity available with future VLSI technologies. Figures
8 and 9 illustrate various characteristics of future reconfigurable DSP systems.
These are not mutually exclusive and some combination of these features will
probably emerge based on driving application domains such as wireless hand-
sets, wireless base stations, and multimedia platforms. Figure 8, taken from
Ref. 116, shows an architecture containing an array of DSP cores, a RISC micro-
processor, large amounts of uncommitted SRAM, a reconfigurable FPGA fabric,
and a reconfigurable interconnection network. Research efforts to condense
DSPs, FPGA logic, and memory on a single substrate in this fashion are being
pursued in the Pleiades project [116,117]. This work focuses on selecting the
correct collection of functional units to perform an operation and then intercon-

Figure 8 Architectural template for a single-chip Pleiades device. (From Ref. 116.)



necting them for low power. An experimental compiler has been created for this
system [116] and testing has been performed to determine appropriate techniques
for building a low-power interconnect. An alternate, adaptive approach [118] that
takes a more distributed view of interconnection appears in Figure 9. This figure
shows how a regular tiled interconnect architecture can be overlaid on a set of
heterogeneous resources. Each tile contains a communication switch which
allows for statically scheduled communication between adjacent tiles. Cycle-by-
cycle communications information is held in embedded communication switch
SRAM (SMEM).

The increased complexity of VLSI systems enabled by Moore’s law pre-
sents substantial challenges in design productivity and verification. To support
the continued advancement of reconfigurable computing, additional advances will
be needed in hardware synthesis, high-level compilation, and design verification.
Compilers have recently been developed which allow software development to
be done at a high level, enabling the construction of complex systems including
significant amounts of design reuse. Additional advancements in multicompilers
[119] will be needed to partition designs, generate code, and synchronize inter-
faces for a variety of heterogeneous computational units. VLIW compilers [120]
will be needed to find substantial amounts of instruction-level parallelism in DSP
code, thereby avoiding the overhead of run-time parallelism extraction. Finally,
compilers that target the codesign of hardware and software and leverage tech-
niques such as static interprocessor scheduling [56] will allow truly reconfigura-
ble systems to be specialized to specific DSP computations.

A critical aspect of high-quality DSP system design is the effective integra-
tion of reusable components or cores. These cores range from generic blocks like
RAMs and RISC microprocessors to more specific blocks like MPEG decoders

Figure 9 Distributed single-chip DSP interconnection network. (From Ref. 118.)



and PCI bus interfaces. Trends involving core development and integration will
continue and tools to support core-based design will emerge, allowing significant
user interaction for both design-time and run-time specialization and reconfigura-
tion. Specialized synthesis tools will be refined to leverage core-based design and
to extract optimum efficiency for DSP kernels while using conventional synthesis
approaches for the surrounding circuitry [1,121].

Verification of complex and adaptive DSP systems will require a combina-
tion of simulation and emulation. Simulation tools like Ptolemy [122] have al-
ready made significant progress in supporting heterogeneity at a high level and
will continue to evolve in the near future. Newer verification techniques based
on logic emulation will emerge as effective mechanisms for using reconfigurable
multi-FPGA platforms to verify DSP systems are developed. Through the use of
new generations of FPGAs and advanced emulation software [123], new emula-
tion systems will provide the capability to verify complex systems at near real-
time rates.

Power consumption in DSP systems will be increasingly important in com-
ing years due to expanding silicon substrates and their application to battery-
powered and power-limited DSP platforms. The use of dynamic reconfiguration
has been shown to be one approach that can be used to allow a system to adapt
its power consumption to changing environments and computational loads [62].
Low-power core designs will allow systems to be assembled without requiring
detailed power optimizations at the circuit level. Domain-specific processors
[116] and loop transformations [124] have been proposed as techniques for
avoiding the inherent power inefficiency of von Neumann architectures [125].
Additional computer-aided design tools will be needed to allow high-level esti-
mation and optimization of power across heterogeneous architectures for dynami-
cally varying workloads.

The use of DSP in fields such as avionics and medicine have created high-
reliability requirements that must be addressed through available fault tolerance.
Reliability is a larger system goal, of which power is only one component. As
DSP becomes more deeply embedded in systems, reliability becomes even more
critical. The increasing complexity of devices, systems, and software all introduce
numerous failure points which need to be thoroughly verified. New techniques
must especially be developed to allow defect tolerance and fault tolerance in the
reconfigurable components of DSP systems. One promising technique which
takes advantage of FPGA reconfiguration at various grain sizes is described in
Ref. 126.

Reconfiguration for DSP systems is driven by many different goals: perfor-
mance, power, reliability, cost, and development time. Different applications will
require reconfiguration at different granularities and at different rates. DSP sys-
tems that require rapid reconfiguration may be able to exploit regularity in their
algorithms and architectures to reduce reconfiguration time and power consump-



tion. An approach called dynamic algorithm transforms (DAT) [127,128] is based
on the philosophy of moving away from designing algorithms and architectures
for worst-case operating conditions in favor of real-time reconfiguration to sup-
port the current situational case. This is the basis for reconfigurable ASICs (RAS-
ICs) [129], where just the amount of flexibility demanded by the application is
introduced. Configuration cloning [130], caching, and compression [131] are
other approaches to address the need for dynamic reconfiguration. Techniques
from computer architecture regarding instruction fetch and decode need to be
modified to deal with the same tasks applied to configuration data.

In conclusion, reconfiguration is a promising technique for the implementa-
tion of future DSP systems. Current research in this area leverages contemporary
semiconductors, architectures, computer-aided design tools, and methodologies
in an effort to support the ever-increasing demands of a wide range of DSP appli-
cations. There is much work still to be done, however, because reconfigurable
computing presents a very different computational paradigm for DSP system de-
signers as well as DSP algorithm developers.
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